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• The investigation of steady-state probability, spectral-correlation 

characteristics of anomalous diffusion in the form of Lévy flights and 

transient dynamics of nonlinear systems characterized by confined 

potentials.

• The study of the stochastic dynamic of the resistive switching 

mechanism in the memristive systems.
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Topics of scientific research
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Statistical characteristics of diffusion
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the variance is finite only if c>4-α, that is the potential wall is “steep enough”. 

and correspondingly the fractional Fokker-Planck equation

with the fractional space derivative

In general one well potentials of the type

Introduction

To explore Lévy flights we have to consider Langevin equation with Lévy stable noise
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Lévy flights in inverse parabolic potential

The residence time T(x0) in the given domain G for the infinite observation time reads
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The unstable parabolic potential

The mean residence time in the domain is

For parabolic potential we arrive at the following

linear differential equation

with the solution



NES effect for Lévy flights in inverse parabolic potential
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The exact formula for the average residence time

as a function of the initial conditions, the

parameters of the system and of Lévy noise source



Barrier crossing event for Lévy flights in bistable potential

where γ is the potential steepness and b is the asymmetry parameter (a, b, γ>0) .

The steady-state regime

We examine the steady-state Lévy flights in the asymmetric bistable quartic potential

It is more convenient to find the steady-state characteristic function firstly.

• apply Fourier transformation to the stationary Fokker-Planck equation;

• substitute the potential form;

• consider the case of Cauchy-stable noise (Lévy index α = 1).
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The values of parameters reads as



The corresponding steady-state probability distribution can be found as

Fig. 1. Asymmetric bistable quartic potential (red curve) and stationary PDF of the particle 

position for different values of the noise intensity parameter D1. 

The values of parameters: a=7, b=6.

Steady-state PDF in asymmetric bistable potential

8



The exact analytical formula for the correlation time of confined Cauchy-Lévy flights

Correlation time in symmetric bistable potential

(A.A.Dubkov,B,Spagnolo,Eur.Phys.J.,216,31-35 (2013))

Comparison with the result for monostable symmetric quartic potential: 

Symmetric bistable quartic potential (b=0)
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The correlation time for discontinuous Markovian process x(t)



Correlation time in symmetric bistable potential

The dependence of the correlation time on the height of the potential barrier ∆U at fixed positions of 
the potential well (a=1) for different values of the noise intensity parameter D1.
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For a sufficiently high potential barrier (or small noise intensity parameter D1 ):

does not depend on the 

height of potential barrier!!! 



Correlation time in symmetric bistable potential

The correlation time versus the position of the potential wells in the normal (left) and log-log 

scale (right) at the fixed height of the potential barrier ∆U=0.1 for different values of the 

noise intensity parameter D1. 

For a sufficiently large a

11



The general expressions for stationary probability distribution in the case of the symmetric steep 

potential well for the anomalous diffusion in the form of Lévy flights with index Lévy

α = 1 have the following form

A.A. Dubkov, B.Spagnolo, Acta Phys. Pol. B 38,1745 (2007)

m = 2n+1

m = 2n
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Spectral characteristics of steady-state Lévy flights in 

monostable confined potential



in the limit m→∞

The infinitely deep rectangular potential well
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The smooth symmetrical steep potential

The steady-state probability distribution in Cauchy case α = 1 has the form of 

well-known distribution of arcsine

Spectral characteristics of steady-state Lévy flights in 

monostable confined potential

The validity of this transformation can be confirmed by 

comparing with the exact results for arbitrary Lévy index α

S.I. Denisov, W. Horsthemke, P. Hӓnggi

Phys. Rev. E 77, 061112 (2008).

Formula was derived by using the special conditions for 

impermeable boundaries at x = ±L.
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Spectral characteristics of steady-state Lévy flights in 

monostable confined potential

Stationary probability densities Pst(x) for different values of the Lévy index α. The value of 

the parameters are: γ = 1, Dα = 1 and L = 1.
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Spectral characteristics of steady-state Lévy flights in 

monostable confined potential

The correlation function for different α. 

Various curves correspond to different values of the exponent m of potential m.
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Spectral characteristics of steady-state Lévy flights in 

monostable confined potential

The spectral power density for m = 100 and for different values of the Lévy index α 

in log-log scale
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Probabilistic characteristics of diffusion in 2D potentials

The general Kolmogorov equation for the joint PDF

According to Newton’s dynamics, the motion of a particle in a viscous medium in the potential profile U(x,y) 

under the action of random external forces in a 2D plane can be described by a system

To obtain a closed equation for the joint probability density function of random Markovian processes x(t) and 

y(t) which can be written in the form of the average

we apply the functional method developed in A. Dubkov, B. Spagnolo, FNL, 05, L267 (2005).

Further we find the steady-state joint probability distribution in the potential with radial symmetry in the case 

of two identical noises
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Gaussian white noise sources

2D-plot of steady-state joint PDF for the harmonic potential in the case of white Gaussian 

driving noises. The values of parameters are D = 5, γ = 2
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Lévy noise sources

2D-plot of steady-state joint PDF for the harmonic potential subject to the Cauchy stable 

noises for different values D1 (γ = 2)



Approbation
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Stochastic approach to the description of 

memristors
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A memristor is a non-linear passive two-terminal electrical
component relating electric charge and magnetic flux linkage.

The memristor's electrical resistance is not constant but depends on the history
of current that had previously flowed through the device, i.e., its present
resistance depends on how much electric charge has flowed in what direction
through it in the past; the device remembers its history — the so-called non-
volatility property.

Basic concept
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Schematics of I-V curve switching characteristics of memristors

(CC – compliance current) with memory windows

Basic concept



PROBLEM:

a lack of stochastic models of memristors

24

TWO APPROACHES TO THE STUDY OF THE MEMRISTOR

• Discrete model (ideal Chua memristor with external Gaussian
noise)

• Distributed model (stochastic macroscopic model based on FPE
for dopants concentration)

Basic concept



For the ideal memristor the state-dependent Ohm’s Law and its associated state equation are

given by:
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The ideal memristor can be defined by an equivalent algebraic function

Firstly, we apply to the memristor a stochastic voltage U(t) in the form of a stationary

Gaussian noise with non-zero mean U0 and the correlation function K(τ).

Chua et al., IEEE Trans. Circuit Theory, 1971

According to the Central Limit Theorem, the process w(t) is again a Gaussian random process

with the following probability distribution

Charge-controlled memristor



We apply the theorem of the probability theory to calculate the PDF of the charge flowing 

through a memristor
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Also we can obtain the PDF of the resistance using the same technology 

Charge-controlled memristor

We consider the following monotonic exponential dependence of the resistance on charge

The exact expression for the PDF of the resistance has the following form  

where  
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PDF of resistance in the case of white Gaussian noise U(t) for different time moments 
(a) U0 = 0, (b) U0 = 1. 

The parameters are q0 = 1, q1 = 0.1, Ron = 1, Roff = 5, D = 0.5.

Voltage. White Gaussian noise
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PDF of resistance in the case of colored Gaussian noise U(t) for different time moments 
(a) U0 = 0, (b) U0 = 5.

The parameters are q0 = 1, q1 = 0.1, Ron = 1, Roff = 5, σ2 = 1, τc = 1.

Voltage. Colored Gaussian noise
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For comparison we apply to memristor the current I(t) in the form of a stationary Gaussian 

noise with zero mean and the correlation function K(τ).

The PDF of charge is a Gaussian process with the following probability distribution

The PDF of the memristance in this case has the following form

For considering case of an exponential dependence of the memristance on charge we obtain

Charge-controlled memristor
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PDF of resistance for the case of white Gaussian noise excitation D(t) = Dt 

as a function of resistance and time. 

The parameters are q0 = 1, q1 = 0.1, Ron = 1, Roff = 5, D = 0.5.

Current. White Gaussian noise



In this model the current I(t) and the voltage U(t)
are connected by the following relation
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where w(t)=l(t)/L is the normalized size of the doped region ([0;1]); L is the full size of the
memristor with two states: RON is the resistance of the memristor if it is completely doped
(LRS) and ROFF is its resistance if it is undoped (HRS).

Current-controlled memristor

We consider a thin semiconductor film sandwiched between two metal contacts. The total
resistance of the device is determined by two variable resistors connected in series
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We analyse the case of the applied current I(t) in the form of white Gaussian noise with non-

zero mean and the intensity 2D1. The charge q(t) is again Gaussian process, but the probability

distribution of the bounded random process w(t) is non-Gaussian and contains two delta-

functions

Based on the same technique we calculate the PDF of the resistance as

Current-controlled memristor
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Stochastic model of memristor

The Fokker–Planck equation (FPE) for the concentration of particles n(x,t)

The Brownian diffusion in tilted periodic potential can be replaced by the diffusion in the flat
tilted potential U1 without barriers

The potential profile U(x, V) for hopping particles is represented by the potential wells separated
by the barriers (external field provides the periodic component Φ(x) and the slope F)

As a result, FPE for the coarse-grained concentration of particles n1(x,t) takes the following form

and the exact expressions for the effective drift and diffusion coefficients, valid for arbitrary
values of F and θ, are the following



34

Stochastic model of memristor

For modeling we used the following boundary conditions

where 0 and L are the coordinates of the TE and BE made of different materials.

Stationary solution of FPE reads as

If BE is made of inert material with a very
high work function, it can be modelled as a
reflecting boundary, that is infinitely high
barrier for the defects at the point x = L.
Replacing boundary conditions (◊) with

the following ones

we get stationary solution of FPE

(◊)
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Stochastic model of memristor

I − V characteristic of the memristive device. Color lines: experimental, measured on 
the device based on Au/Ta/ZrO2(Y)/Ta2O5/TiN/Ti structure (different colors 

correspond to different switching cycles). Black line: theoretical, based on numerical 
simulation with boundary conditions (◊). 
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Stochastic model of memristor

Relaxation time as a function of dimensionless noise intensity θ/Ea for

potential profile with equal widths of barriers and wells a = b, where Ea is

activation energy at V = 0 (solid line). Inset: the same relaxation time as a function 
of dimensionless noise intensity but for large values of θ/Ea.
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o The exact analytical results for the statistical characteristics of the residence time

for anomalous diffusion in the form of Lévy flights in the inverse parabolic potential

were obtained. NES phenomenon was observed in the system investigated.

o The exact analytical expression for the correlation time of Lévy flights in the

symmetric bistable quartic potential has been first obtained. The correlation time

ceases to depend on the height of potential barrier separating the two stable states

for sufficiently high barriers unlike the Kramers’ law for Brownian motion.

o The exact analytical result for the stationary PDF of the particle position in the

asymmetric bistable quartic potential in the case of the unit Lévy index has been

found.

o The new analytical expression of the steady-state PDF for Cauchy-Lévy flights in

the symmetric steep potential well has been derived. In the limit m→∞ results

coincide with those previously obtained for the infinity well of deep rectangular

potential profile, without considering the problem of the boundary conditions.

o The asymptotic expression of the spectral power density for the steady-state

superdiffusion in symmetric steep potential profiles, for arbitrary Lévy noise index

α, has been found.

o For 2D diffusion the general Kolmogorov equation for the joint PDF of particle

coordinates has been obtained by functional methods directly from two Langevin

equations with statistically independent noise sources.

Main results of Chapter 1
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o Two models of an ideal Chua memristor with the external Gaussian noise have

been investigated.

o For the charge-controlled memristor the exact analytical expressions for the

PDF of the memristance is found in general case. In the specific example of an

exponential dependence of R(q) the influence of the noise mean value and the

type of driven Gaussian noise on the memristors switchings between two

states is analysed.

o For the current-controlled memristor we obtain exact analytical expressions for

the PDF of the memristance.

Main results of Chapter 2
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o We proposed a simple stochastic model for memristive systems which is validated

experimentally and reproduces some fundamental properties of resistive switching.

o The steady states of the model systems are shown to be of equilibrium or

nonequilibrium depending on the boundary conditions, which in turn depend

on the materials of the electrodes.

o The relaxation time to the stationary state is obtained in analytic form and it

has a nonmonotonic dependence on the intensity of the fluctuations for a

certain set of values of the external parameters.

o Some specific shapes of potential profiles, that describe the internal structure

of the memristive material, are shown to accelerate the relaxation process.

This paves the way to the use of noise as a control parameter for switching

dynamics, and provides insight on the interplay between the properties of the

dielectric structure and the switching times of the memristors.

Main results of Chapter 2
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